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A novel discrete grey Riccati model
and its application
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Abstract

Purpose — To develop the theory and application of the grey prediction model, this investigation constructs a
novel discrete grey Riccati model termed DGRM(1,1).

Design/methodology/approach — By examining a special kind of Riccati difference equation and the
structure of the conventional discrete grey model (DGM), we advance a novel DGRM, and the model’s
prediction effect is evaluated by two numerical examples and an application case and compared with that of
other conventional grey models.

Findings — The average relative simulation error of DGRM(1,1) does not change if the model is built after the
original sequence has been transformed by a multiplier, and the new model is suitable to predict monotonically
increasing, monotonically decreasing and unimodal sequences.

Practical implications — DGRM(1,1) is utilized to forecast the development cost of a small plane owned by
the Aviation Industry Corporation of China (AVIC) with an original data sequence from 2006 to 2013.
The outcomes indicate that DGRM(1,1) exhibits high precision and potential in development cost prediction.
Originality/value — Combining the Riccati difference equation with the conventional DGM, the author
advances a new grey model that is suitable to predict three kinds of data series with different changing trends.

Keywords Grey system, Riccati equation, Discrete grey model, GM(1,1), Grey Riccati model
Paper type Research paper

1. Introduction

Grey system theory (Deng, 1982) was proposed in 1982. It is mainly used to address uncertain
system problems with small samples and little information. From the current research,
scholars pay more attention to the grey prediction methods in this theory, and they look upon a
system as a continuous function, which changes with time. It does not need many time-series
data to obtain a good prediction effect and high precision when modeling. The first-order grey
model (GM) with one variable (GM(1,1)), as the basic model of grey prediction theory, has been
applied in various fields. The accumulative generation operator is an essential element of
GM(1,1) and the other grey prediction models, and it can be considered a special technique of
data transformation (Wei ef al, 2020). Through accumulation of the outputs of an observed
system, a chaotic nonnegative time series can show an approximate exponential growth trend
so that the features and integral laws hidden in the series can be fully mined by establishing a
first-order differential equation (also called the whitening differential equation) (Wu et al,
2013a). By solving this differential equation, a time-response function for prediction can be
obtained. From it, the simulation and prediction value of the first-order accumulation sequence
can be obtained. Finally, the prediction results of the original sequence can be calculated by a
recursive reduction formula. The identification process of model parameters is to discretize the
first-order differential equation to obtain a difference equation and then employ the least
square method to solve it. GM(1,1) exhibits a good simulation effect on sequences that
approximately obey the homogeneous exponent law, but it is difficult to achieve the ideal effect
on sequences with other characteristics. Therefore, to adapt to the changing characteristics of
different sequences to achieve high prediction accuracy, researchers have optimized or
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extended the GM(1,1) model and obtained a series of research results. For example, to make
most of the new information of the system, Wu et al (2013b) extended the first-order
accumulation to the fractional-order accumulation and constructed the GM(1,1) model based
on fractional-order accumulation. Ma ef /. (2019) used the Simpson formula to reconstruct the
background value and presented an improved GM(1,1) model. Cui ef al. (2013) replaced the
constant term of the whitening differential equation of GM(1,1) with a linear time function and
developed a new model (NGM(1,1)), which was fit for the prediction of a time series with a non-
homogeneous exponential law. Qian et al. (2012) constructed a GM involving a time-power
term (GM(1,1, %), in which the variability of a allows the model to have strong adaptability.
Chen (2008) replaced the traditional grey differential equation with the Bernoulli equation and
proposed a nonlinear grey Bernoulli model (NGBM(1,1)). Wang ef al (2018) combined the
accumulation generation operator with seasonal factors and developed a seasonal GM(1,1)
model, which can effectively identify the seasonal fluctuation characteristics contained in a
time series. Luo and Wei (2017) substituted the constant term of the whitening differential
equation of GM(1,1) for the polynomial function and put forward a grey polynomial model
(GPM(1,1,N)), which could adapt to a time series with various changing characteristics.

Although the above models broaden the application scopes of GMs, because each time-
response function for prediction is obtained by solving the whitening differential equation and the
parameters of the model are obtained by solving the difference equation after discretization of the
differential equation, discretization errors inevitably exist. To eliminate these errors and improve
the modeling accuracy of the GM, Xie and Liu (2005) proposed a discrete GM(1,1) model
(DGM(1,1)), whose basic form is a first-order difference equation, and the identification values of
the model parameters and the time-response formula are all based on this equation. Therefore, in
most cases, DGM(1,1) can better describe the system’s development trend than GM(1,1). To further
improve the prediction performance, some other DGMs are proposed based on DGM(1,1). For
example, Xie et al (2013) proposed a non-homogeneous DGM (NDGM(1,1)) for a non-homogeneous
exponential time series by replacing the constant term in DGM(1,1) with a linear time function. Wu
et al (2014a, b) replaced the first-order accumulation operator with the fractional-order
accumulation operator and constructed the DGM and the non-homogeneous DGM based on
fractional order accumulation, which could effectively improve the prediction accuracy of the
original models. Yang and Zhao (2015) developed a discrete grey power model by replacing the
constant term in DGM(1,1) with a power function and extended the new model to a fractional-order
discrete grey power model by introducing the fractional order accumulation operator. Wei et al.
(2019) substituted the constant term in DGM(1,1) for the N-order polynomial function and
established a discrete grey polynomial model (DGPM(1,1,V)), which could adaptively select
the optimal prediction model according to the sequence characteristics. Ma and Liu (2016)
presented a discrete multivariable GM (RDGM(1,%)) on the basis of the multivariable GM
(GMC(1,n)) (Tien, 2005) and showed that RDGM(1,%2) has better prediction performance than
GMC(1,7) in most cases. The construction of the above DGMs greatly promotes the
development of grey prediction theory. However, in practical applications, the prediction
accuracy of the existing models for some sequences is not ideal and still needs to be
improved. Therefore, it is necessary to study grey prediction methods more widely and
develop more new prediction models to adapt to complex sequences.

The Riccati difference equation is an important class of nonlinear difference equations. It is the
basis of studying and solving discrete-time optimal control and filtering problems and has been
used widely in some engineering fields, such as hydrodynamics and elastic vibration theory
(Zhang and Dower, 2015; Wang et al.,, 2019; Chen and Shon, 2019). To further develop the theory of
the grey prediction model, by using the construction method of the DGM and introducing a
special kind of Riccati difference equation to replace the traditional grey difference equation, we
construct a novel discrete grey Riccati model (DGRM) and analyze its adaptability and properties.
Finally, several cases are utilized to evaluate the new model’s effectiveness and practicability.



The rest of this investigation is arranged as follows. In Section 2, a new DGRM is advanced. A novel DGRM

Then, the adaptability of the new model is analyzed, and two essential properties are
presented. In Section 3, two numerical examples and an application case are given to check the
new model’s prediction effect. In Section 4, the conclusions of the investigation are drawn.

2. Discrete grey Riccati model
2.1 The construction of the discrete grey Riccati model
From Wang et al (2019), the general form of the Riccati difference equation can be

expressed as: az)w(z) + b(2)
w(iz+1)= mv

in which a(z), b(z), c(z) and d(z) represent rational functions with a(z)c(z) #0 and
a(z)d(z) —b(z)c(z) #0. When a(z), b(z), ¢(z) and d(z) are constant functions, Eq. (1) can be
simplified to the following form: aw(z) +

w(z+1) 0@ 17

where @, # and y are real numbers with a # 0 and  # ay.

Eq. (2) is a special kind of Riccati difference equation. Now, we combine it with a DGM and
then construct a new DGRM.

Suppose that X© = (x)(1),x©(2),---, 2% (n)) is a non-negative data sequence of a
system with # entries, the sequence X o _ = (W (1),2x0(2),---,xV(n)) is the first-order
accumulative generation sequence, where:

@

@

Definition 1. The equation
W (p b
M _a (k) +
(k+1) 0 1 ¢

is called a DGRM, and it is denoted as DGRM(1,1).
From Eq. (3), we have:

(@#0,b+#ac) 3)

Ok +1) [xV (k) + ] = axV (k) + 0,
that is,
axV (k) +b— cxV(k+1) = 2V (k) 2V (k + 1)

For a given original sequence X, the unconstrained optimization problem under the least
square criterion of DGRM(1,1) is as follows:

n—1

min Y (O (R)xD (ke + 1) — ax® (k) — b+ exV (ke + 1))

abc —

Thus, the parameters of DGRM(1,1) are estimated by:
%= (@b0" = (B'B) ' B'Y @
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with,

xﬁz(l) 1 —xM(2) xEB(l)xS;(Z)
0

B @2y 1 -3 v- 2D (2)x1(3)
-1 1 -0 2 (n = 12O (n)

By substituting the obtained parameter values ¥ = (4, 5, c) Tinto Eq. (3), the fitted sequence
~a

XY of DGRM(1,1) satisfies the following relationship:
axV (k) +b

/\(1)
2 (k+1) = ——>—.
( ) 7V (k) +7¢

©)

To obtain the expression of 7V (k) in Eq. (5), we first deform Eq. (5). Let,

; =y%” (k) 0

then,
(k) = -7 ©)

By substituting Eq. (6) into Eq. (5), it follows that:

NS
we+?) A" —¢) + o
7 DR

y(k+1) o

By simplifying Eq. (7), we can obtain that y(%) satisfies the following equation:
y(k+2) — @+70k+1) + (@c—byyk) = 0. @®)

Eq. (8) is a second-order homogeneous difference equation with constant coefficients, so its
characteristic equation is:

P—@+0A+ac—b=0. ©)

Let A= (a+¢)?—4(@c—b) = (@—2¢)>+4b. It follows from Eq. (9) that the two
characteristic roots of Eq. (8) can be expressed as:

_a+c—vVA | a+c+VA
—_— ~ T.

M 5 , A2 = (10)

Thus, the general solution of Eq. (8) can be written as:

o~ o~ k o~ o~ k
— VA A
m(HCTv) +m(%v) AS0

a+c\' (8]
2

(my + mak) (— A=,

~1p

me(ac — b)2" cos(6k +ms), A <0




in which @ = arctan (%/_ﬁ) and m;(1 = 1,2, - -,6) are arbitrary constants that satisfy that
a+c
my and m, are not both zero, m5 and m, are not both zero and mg # 0.
Substituting Eq. (11) into Eq. (6), U (k) can be expressed as

TN k+1 TN k+1
m (aHE\/Z) + my (aHE\/K)
7 ——¢ A>0
m (aﬂ;ﬂ) T my <a+cg\/5)
1)
k=< 12
(k) (@+7c)(ms +my(k+1)) 12
—-c¢, A=0.
2(1’}’lg + Wl4k)
Viac —bcos(6(k+ 1) + ms) 2 A<0
cos(6k + ms)

When A = 0, the system is in a critical and very unstable state, and it is easily affected by the
calculation rounding error, measurement error and sequence length. Additionally, when
A < 0, it can be seen from Eq. (12) that the fitting function contains two trigonometric
functions. Because the trigonometric functions are oscillatory and the first-order
accumulative generation sequence of a non-negative sequence is an incremental sequence,
it is not appropriate to use an oscillatory sequence to fit an incremental sequence. From the
above analysis, the model established when A <0 is not suitable for simulation and
prediction. Therefore, this investigation only discusses the case when A > 0, and this case is
very common. That is, the time response formula of the DGRM(1,1) for prediction in this
investigation is given by

TN k+1 N k+1
my <a+€5\/—A_> + my <a+c£\/—A_>
(k) = — - (13)
m <a+c; \/K) +my <a+cg\/K>

By Eq. (10), If m4 #0, then Eq. (13) can be written as:

20 (k) = Wlll}fﬂ + le/l?rl -
Wlllllle + le/'tg

(Wllillﬁ + leﬂlﬂ.};) — leﬂlﬂg + leﬂzﬂ.g _ ,E

mlxllf + mleg

Mo (A — A1) 2% L oma(e— 4 ~
_ z(kz 1)k2_|_/11_C: 2(2k 1) Y- (14)
Wl]ﬂlengﬂz 2
mi\ | tme

Ay — M

=——F———+Ah -0
my ﬂl 1
mo ﬂvz
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Letm = Z—;; then, Eq. (14) is equivalent to:

~ A — 2
e =" T (15)
n(e)
To determine the value of , we choose the initial condition as:
V1) = x0(). (16)

Substituting Eq. (16) into Eq. (15), we can obtain:
Ao (x(l) (].) +7— ﬁg)

T 17
(1) +2— 4n) an
Thus, the time response formula of DGRM(1,1) can be expressed as:
Ao /1
() o
where 1, 5 —Mand m = V) re=iy)

WD (1)e-a)
From Eq. (18), We can calculate the simulation and prediction values X M (A)(k=1,2,--)
of the sequence XV. Because,

k-1

= " 500) + 20 (k) = 2V (k — 1) + 2 (k).

=1

the simulation and prediction values 70 (R)(k = 1,2, --) of the original sequence X ¥) can be
obtained by the following recursive formula:

{Zw-w
() =2"0) -3k -1), k=23,

2.2 The adaptability analysis of the discrete grey Riccati model
According to the time response formula of DGRM(1,1), we define a continuous function as:

*W(t) = /12;/11 +h —c,

m(%) +1

— AoV te—2p)
where 41 5 and m = RGO (D= )

Clearly, we have that A; < 2. Next, we will analyze the monotonicity of () (t) according
to the values of 4y, A3 and m.
(1) For 0 < A1 < 4y, we can obtain that dp—4; >0 and 0 <7 ’11 < 1. When m > 0,
Ao — ﬂl

_ atew (a—c)>+4b
2

m('“) is monotonically decreasing, that is, is monotomcally increasing.

A
m /12 +1



Thus, ) (¢) is also monotonically increasing. When < 0, m(*l) is monotonically A novel DGRM

Ao —A
m(%) t+1

monotonically decreasing.

increasing, that is, is monotonically decreasing. Thus, x1)(¢) is also

(2) For /11 < 0 < A9, we have that 4o — 41 > 0and Al < 0. When ¢ is a positive integer,
(jl) is oscillatory, so () () is an oscillatory functlon

3) For A3 <A, <0, we have that A—4; >0 and ’1—1>1 When m > 0,

t. . . . .
m(%) is monotonically increasing, that is, ’1(: )A‘

m(5L) +1
2]

Thus, x1(¢) is also monotonically decreasing. When m < 0, m (j—;)t is monotonically

is monotonlcally decreasing.

=X
m(%)l+1

monotonically increasing.

decreasing, that is, is monotonically increasing. Thus, x1(¢) is also

In summary, we can obtain the change characteristics of function ) (£) in various cases and
list the detailed results in Table 1.

Since XV = (xV(k)|k = 1,2, - - -, n) is the first-order accumulative generation sequence
of a non-negative original sequence, ¥V (k) increases with the increase of £. Therefore, we
only analyze the case when the function x(!(#) is monotonically increasing. Now, we analyze
the asymptotic behavior of x(1) (¢) when it is increasing.

(1) When 0 < A; < 42 and m > 0, we have 0 < Al < 1If t— + oo, then (’“) -0 It
follows that:

W)=y —c

t
(2) When 4; <1 <0and m <0, Wehave >1 If t— + oo, then (%) - +oo. It
follows that:

sV(t) =4 —c.

Next, we will analyze the concavity and convexity of ¥V (¢) when it is increasing. To simplify
the expression of x“)( ), we let A = 41 and 6 = Ao — A1. Then,

AVt =—F—+h —c 19
( ) /11‘ +1 1 ( )
Therefore, the derivative of xV)(¢) can be calculated as:
O (¢ 5 d méln A
( ) _ - 2 (m ﬁt 1) — _ . 5 t ,
dt (ma' +1)7 dt (ma" +1)
Serial number N Ay m * (8
1 + + + Monotonically increasing
2 + + — Monotonically decreasing
3 - + +or — Oscillatory
4 — — + Monotonically decreasing
5 - - - Monotonically increasing
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Figure 1.

The changing curves of
D (k) in two

different cases

and the second derivative of x! (¢) can be calculated as:

dx D (1) d A
e e

A A(mal +1)% = 2 2(mA’ +1)-mA'In A
(ma' +1)

= —méln A-

= —ﬂ~ (In2-2" — m*In A-2*)
(ma' +1)
2,
_ _m5(1tn/1) /14 (1- m2/12t)
(mA' +1)
Here, we only consider the general case when A#1 and m #0. Let

1—m23% = (. Thus, we can get a possible inflection point f, = —1ogl‘m|.

(1) Tm>0and0 <4< 1 then 250 > 0for t < fyand 00 < Ofor ¢ > 4

(@) Ifm < 0Oand A > 1, then dZﬁ;;(t) > Ofor t < #pand dzﬁ;m < Ofor t > t.

In the above two cases, x1) (¢) is shown as an increasing curve that changes from concave to
convex, which is also called an S-type curve. For time series ¥V (k) (k=1,2,---),if {p > 1,
then x()) (k) is an S-type curve, and x() (%) is a unimodal curve that changes from increasing to
decreasing. If #) <1, then x(V) (k) is a convex and increasing curve, and x*) (k) is a decreasing
curve. Figure 1 depicts the changing curves of x1) (k) in two different cases.

From the above analysis, DGRM(1,1) is fit for the simulation and prediction of a single peak
sequence and a decreasing sequence. In fact, if a single peak sequence is divided into two stages:
an increasing stage and a decreasing stage, then a decreasing sequence can be looked upon as
the second stage of a single peak sequence. Therefore, DGRM(1,1) is also appropriate for the
short-term prediction of the first stage of a single peak sequence (i.e. an incremental sequence).

W (t)
az

=(, then

2.3 Two properties of the discrete grey Riccati model

Proposition 1. Suppose that the estimated parameters of DGRM(1,1) for nonnegative
sequences X0 = (x0(1),20(2),- -+ 20 (m)) and X" = (1),
xf;)) (2),--- ,xfjo) (n)) are ¥ = (a, Z,E)T and & = (c? , y , g)T, respectively.
1 X = pX©O(p > 0), thend = pa b = p*band ¢ = pi.

1 15
09 14
08 i

07
0.6 12
05 11
0.4 10

03
9

0.2
0.1 8
0 7

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

(1) 2=50,m=16,0=1,4-c=-0.05 2) 4=2,m=-4,6=50,A—c=15



Proof from Eq. (3), we have: A novel DGRM

ax (k) + b — cx (ke + 1) = xD (k)x D (k 4 1). and its
application
Let,
W1 1 —xD(2) 2 (1)x1(2)
M2 1 —xM(3 M) (3
s_| @ x(3) nd ¥ — (2)x7(3)
2D (n -1) 1 —x) (n) W (n — ’1)x<1> (n)

Then,( )the parameter estimation formula after establishing the DGRM(1,1) model
for X is:

@0,0" = (B"B)"B"Y.

Since Xﬂ(lo) = pXO), X(](l1> = (xg)(l),xfj )(2), e ,xfjl)(n)), which is the first-order
accumulative generation sequence of X (O>, satisfies:

k k k
2Py =" xl ) =D px0G) = p Y xOG) = pxV(k), k=1,2,--.n
j=1 j=1 j=1

Let,
A1) 1 P PP 2)
(1) (1) 1) (1)
x5 (2 1 —x.,(3 x5 (2)x,7 (3
po| MO SO iy | @O
-1 1 2P 2P n—1)2 (n)

Then, the parameter estimation formula after establishing the DGRM(1,1) model
for X;O) is:

@.,0,0)" = (B'B,) "BV,

We can obtain that,
(1) 1 (1) )
x((il)( )xfl)( ) px(?(l)'px(?@) x(i)(l)x(i)(z)
o | e px0(2)-px)(3) A @0E)
1= = . = .
: D — 1) gD My — 11D
2D — l)xél)(n) px(n—1)-pxt(n) 2 (n—1)xM (n)

=p’Y,
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' ' ; Op—1) 1 —px®
xfil)(nfl) 1 7x[(11)(n) px (1’1 1) 1 px (1’1)

p 0 0
where M is a non-singular matrix defined as M = (0 1 0) . Since,
0 0 p

S
o

NI—= O

We have,
@,0,0)" = (B'B,) " BTy = [(BM)T (BM)] ™ (BM) (p*Y)

= pP(M"B"BM) " M"B"Y = p*M-\(B"B)" (M") " M"B"Y

1 0 0
p
— M7 (B'B)'B'Y =p*| 0 1 o |(B"B)"B"Y
0 0 !
p
p 0 0 a
=[o p2 oflb]|= (pﬁ,ng,pf)T.
0 0 p/)\¢

Therefore, we obtain that & = pa, b= p%b and ¢ = pC.
Proposition 2. Suppose that the fitted sequences of DGRM(1,1) for nonnegative sequences
(0 (0
X© and X ;0) are X © and X El ), respectively. Let,

1 7 (k) — 2O (k) 1 A7) (k) — ) (k)
8—%27 and €d—nz)(k)‘

0
k=1 xO (k) k=1 xfi

If X;O) = pX O then e = ¢,.



Proof Suppose that the estimated parameters of DGRM(1,1) for nonnegative sequences A novel DGRM

X and X ;0) are® = (@,0,0)" and ¥ = (@,0,¢)7, respectively. According to Section 2.1,
the time response sequence of DGRM(1,1) for X(*) can be expressed as:
A —h

k) =—2"0 -8 k=12,
A
m(ﬁ) +1
e Sy PN .
where 1, = “¥¢F (2”"‘) 0 and = 26V Weob) The time response sequence of
’ A (e (1) +e— )
DGRM(1,1) for X §0> can be expressed as:
. Xy — 2 PN
B (k) =—2 A —+4 ¢, k=12, (20)
o
m(f) +1
N R T
Where 11,2 —_ Wand m = M

AP @)+ -2
SmceX = pX O we have X, 0 _ = pX(), Owing to Proposition 1, we have that @' = pg,
b= pr and ¢ = = pc. Therefore, we obtain the following relationship:

/11 = pl1, /12 = ply and m' =m. 21)

By substituting Eq. (21) into Eq. (20), we obtain:

7 A2 — pA . pll—14 L
(k) = pzifl—i—p/h o= p(z—kl)‘i‘P(h _9) = 2V,
A A
m(5) +1 m(2) +1

Then, the restored values of xf;n (k) can be expressed as:

#'(1) =z (1) = pz" (1) = p” (1)
2 (k) =3 (k) — 2 (k= 1) = p&" (k) — 2"V (k= 1) = pV (), k=23,

It follows that X, g = pX ), Therefore,

_1y S[px (k) — (k)| 1
-ty |

&) (k) — 1 <k>' Ly
= xl(zm (k) Lyt pxO) (k)

Proposition two shows that the average relative simulation error (ARSE) of DGRM(1,1) does
not change if the model is built after the original sequence is transformed with a multiple
coefficient p. Therefore, selecting an appropriate multiple coefficient can reduce the condition
number of BT Bin Eq. (4) and improve the model’s reliability and applicability (Cui et al., 2016).

Next, we will provide a numerical example to test the impacts of the multiplier coefficient
on the condition number of BT Band the ARSE of DGRM(1,1). Here, the original time series is
constructed as

" 70 (k) — 2O (k)
2O (k)

n k=1

-

O =(04, 08, 1.4, 22, 3.3, 46, 6.1),
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Figure 2.

The spectral condition
numbers and the
ARSEs under different
multiple coefficients

and the multiple coefficient in the interval (0,1] is taken sequentially at every 0.05 units.
Thereafter, the DGRM(1,1) models are established based on different multiple coefficients,
and the corresponding spectral condition number of B” Band the average relative simulation
error of the model are obtained. The spectral condition number of B B can be calculated as:

-1
cond(B"B), = ||(B"B) " [[+[|(B"B)ll,,

where ||-||, denotes the L* matrix norm.

Figure 2 reveals the spectral condition numbers of BB and the ARSEs of DGRM(1,1)
under different multiple coefficients. From it, we can see that the ARSE remains unchanged
(1.54%) regardless of the multiple coefficient. Moreover, when the multiple coefficient is taken
near 0.35, the condition number can reach the minimum. Therefore, this case test can verify
that selecting an appropriate multiple coefficient can effectively reduce the condition number
and keep the ARSE unchanged.

3. Case study

To verify the validity and practicability of the grey discrete Riccati model proposed in this
investigation and highlight its advantages in prediction, two numerical examples and an
application case are tested by the new model and common GMs, such as the grey Verhulst,
GM with a polynomial term (GMP(1,1,N)) (Luo and Wei, 2017), discrete GM(1,1) model
(DGM(1,1)) (Xie and Liu, 2005) and nonhomogeneous discrete GM(1,1) model (NDGM(1,1))
(Xie et al., 2013), are established to compare with the new model.

3.1 Numerical examples

Case 1. Suppose that a function x1 (k) = 3¢"* 4 £? +10.Letk = 1,2, - - -, 7; then, we can
obtain a sequence.

X1 = (14.3155, 17.6642, 23.0496, 30.4755, 39.9462, 51.4664, 65.0413).
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From the data characteristics, the sequence X; is a monotonically increasing sequence. Here, A novel DGRM

we use the first six data points of Xj to construct the grey Verhulst model, DGM(1,1),
GMP(1,1,2), NDGM(1,1) and DGRM(1,1), and the seventh datum is utilized to evaluate the
prediction effect of each model. Table 2 reveals their simulation and prediction values and
relative errors, and numerics in italic stand for the best results.

From Table 2, the average relative simulation errors of the grey Verhulst model,
GPM(1,1,2), DGM(1,1), NDGM(1,1) and DGRM(1,1) are 17.37, 0.004, 0.57, 0.38 and 0.36%,
respectively. The results show that DGRM(1,1) is superior to the grey Verhulst model,
DGM(1,1) and NDGM(1,1) and inferior to GPM(1,1,2) in simulation performance. In addition,
from the perspective of prediction error, the one-step prediction errors of the grey Verhulst
model, GPM(1,1,2), DGM(1,1) and NDGM(1,1) are 21.40, 0.01, 3.87 and 2.29%, respectively,
while the one-step prediction error of the DGRM(1,1) proposed in this investigation is 0.36%,
which is greater than that of GPM(1,1,2) and noticeably smaller than that of the other three
models. From the point of view that the simulation and prediction performance of the new
model is inferior to that of the GMP(1,1,N), the new model is not the best choice for the
simulation and prediction of sequences with a mix of exponential and polynomial
characteristics; however, it is worth noting that the number of parameters of the new
model is 3, which is less than that of the GPM(1,1,2), indicating that the structure of the new
model is relatively simple compared to the structure of the GPM(1,1,2). The above analysis
results show that DGRM(1,1) is suitable for the simulation and prediction of a monotonically
increasing sequence.

Case 2. Suppose that a function x3(k) = % +2 Let k=1,2,---,7 then, we can
obtain a sequence.

X, = (83.8731,49.3988, 33.6857, 24.4664, 18.4521, 14.2962, 11.3205).

From the data characteristics, the sequence X5 is a monotonically decreasing sequence. Here,
we use the first six data points of X to construct the grey Verhulst model, GPM(1,1,2),
DGM(1,1), NDGM(1,1) and DGRM(1,1), and the seventh datum is utilized to evaluate the
prediction effect of each model. Table 3 reveals their simulation and prediction values and
relative errors.

From Table 3, the average relative simulation errors of the grey Verhulst model,
GPM(1,1,2), DGM(1,1) and NDGM(1,1) are 14.11, 0.66%, 3.09% and 0.64%, respectively,
while the average simulation relative error of DGRM(1,1) is 0.14%, which is noticeably
smaller than that of the former four models. The maximum simulation errors of the five
models are 31.22%, 1.57%, 8.38%, 1.27% and 0.29%, respectively, which show that
DGRM(1,1) exhibits the best stability. Additionally, from the perspective of prediction
error, the one-step prediction errors of the grey Verhulst model, GPM(1,1,2), DGM(1,1) and
NDGM(1,1) are 55.30, 2.16, 16.59 and 6.90%, respectively, while the one-step prediction
error of DGRM(1,1) proposed in this investigation is 0.97 %, which shows that the prediction
accuracy of the proposed model is significantly higher than that of the other four models. In
conclusion, DGRM(1,1) is fit for the simulation and prediction of a monotonically decreasing
sequence.

3.2 Application

In recent years, China’s demand for general aircraft has gradually increased with the rapid
development of its economy. Because a country’s aircraft manufacturing and scientific
research capabilities determine the development level of its general aviation industry, the
Chinese government has increased its research and development investment in the general
aviation industry and actively promoted its rapid development. Accurate prediction of the
development cost of a specific type of aircraft is conducive to the rational use and allocation of
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investment funds by airlines. In this investigation, we take the use of the research and A novel DGRM

development cost of a small plane owned by the Aviation Industry Corporation of China
(AVIC) as an example and select the data from 2006 to 2013 (500, 770, 1,220, 1,060, 545, 219, 72,
23, unit: ten thousand yuan) (Ding ef al, 2015) as an original sequence. From the changing
characteristics of the data, the sequence first shows an increasing trend and then shows a
decreasing trend, which is a single peak data sequence. Here, we employ the data from 2006 to
2012 to establish the grey Verhulst model, GPM(1,1,3), DGM(1,1), NDGM(1,1) and DGRM(1,1),
respectively, and the data from 2013 are utilized to evaluate the prediction effect of each
model. Table 4 reveals their simulation and prediction values and relative errors.

From Table 4, the average relative simulation errors of the grey Verhulst model,
GPM(1,1,3), DGM(1,1) and NDGM(1,1) are 6.36, 5.76, 76.89 and 25.78 %, respectively, while the
average simulation relative errors of DGRM(1,1) proposed in this investigation are 1.11%,
which is noticeably smaller than that of the former four models. The maximum simulation
error of DGRM(1,1) is 3.61%, which is the smallest of the five competing models, and it
indicates that DGRM(1,1) exhibits the best stability. Additionally, from the one-step
prediction error and prediction value, the prediction errors of the grey Verhulst model,
GPM(1,1,3), DGM(1,1) and NDGM(1,1) are 24.26, 1557.20, 955.21 and 1063.94 %, respectively,
and the prediction value of NDGM(1,1) is negative. Obviously, GPM(1,1,3), DGM(1,1) and
NDGM(1,1) are not appropriate to simulate and predict the development cost. The one-step
prediction error of DGRM(1,1) is only 0.69%, which is noticeably smaller than that of the other
four models. In conclusion, DGRM(1,1) can precisely reflect the changing trend of the
development cost of a small plane, and it shows that DGRM(1,1) is suitable for the simulation
and prediction of a single peak sequence, which exhibits good application potential.

4. Conclusions

In this investigation, the Riccati difference equation and GM are combined to construct a
novel DGRM, and it is theoretically found that the new model is appropriate to predict
monotonic increasing, monotonic decreasing and unimodal sequences. Finally, two numerical
examples and an application case are used for testing, and the outcomes indicate that the new
model is effective and practical compared with the other conventional GMs, confirming the
theoretical analysis results. The new model is a supplement to the grey prediction model,
which develops the theory and application of the grey prediction model. Of course, there are
still some problems worthy of further study, such as the stability and further optimization of
the new model.
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