段德华老师作为独立作者于2023年8月在《Rocky Mountain Journal of Mathematics》上发表了题为"On the Convergence of 3D Leray-$\alpha$ Equations with Navier Slip Boundary Conditons"的研究论文(DOI:10.1216/rmj.2023.53.1043).《Rocky Mountain Journal of Mathematics》是JCR Q3区,最新影响因子为0.8(2022-2023年度)。
附摘要:
We investigate the limit behavior for the solution of the Leray-$\alpha$ equations with a Navier-Slip boundary conditions in 3D smooth bounded domain to the solution of Euler equations as the parameters $\alpha, \nu$ tend to zero. Firstly, we focus on the convergence in $L^{\infty}(0, T;L^{2}(\Omega))$ by the energy method. Secondly, we prove the convergence in $L^{\infty}(0, T;H^{1}(\Omega))$ by choosing the proper expansion ansatz and constructing the corresponding boundary layer profile.